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The waveguide eigenvalue problem

The following PDE–eigenvalue problem arises in the study of waves traveling in a
periodic medium [3]

∆u(x, z) + 2γuz(x, z) + (γ2 + κ(x, z)2)u(x, z) = 0, (x, z) ∈ R2,

u(x, z) = u(x, z + 1) for all (x, z) ∈ R2,

u(x, ·) → 0 when x→ −∞,
u(x, ·) → 0 when x→ +∞.

The eigenvalues of interest are in the region

Ω = {λ ∈ C | Reλ < 0,−2π < Imλ < 0}

The function κ(x, z) (wavenumber) is:
• piecewise constant,
• κ(x, z) = κ− when x ≤ x−
• κ(x, z) = κ+ when x ≥ x+

• κ(x, z) = κ(x, z + 1)
Wavenumber of a sample waveguide.

In the infinite domain Dout = ([−∞, x−]∪ [x+,+∞])×R the wavenumber is constant,
therefore the problem has an analytic solution. Using the Dirichlet to Neumann
(DtN) map we reformulate the problem in Din = [x−, x+] × R imposing artificial
boundary conditions in order to match the solution in Din ∩ Dout.

∆u(x, z) + 2γuz(x, z) + (γ2 + κ(x, z)2)u(x, z) = 0, (x, z) ∈ Din,

u(x, z) = u(x, z + 1) for all (x, z) ∈ R2,

T−,γ[u(x−, ·)] = −ux(x−, ·),
T+,γ[u(x+, ·)] = ux(x+, ·).

A particular type of FEM discretization leads to the following nonlinear eigenvalue
problem, which consists of finding pairs (γ, v) ∈ C × (Cn \ {0}) such that

M(λ)v =

(
Q(γ) C1(γ)
CT

2 RΛ(γ)R−1

)
v = 0.

Properties of the problem:
• the size of the problem is n (large number) and Λ(γ) ∈ C

√
n×
√

n,
• the matrices Q(γ) and C1(γ) are sparse and polynomials of second degree in γ,
• the matrix Λ(γ) is diagonal and involves square roots of polynomials in γ,
• the functions involved in Λ(γ) have singularities in the imaginary axis, therefore

close to the region where the eigenvalues of interest lie,
• there is a closed formula for the derivatives of M(λ),
• the matrix-vector product corresponding to R and R−1 can be computed with the

Fast Fourier Transform (FFT).
Through a Cayley transformation the eigenvalues of interest are mapped in the uni-

tary disk and the singularities in the unitary circle. The structure of the eigenvalue
problem is preserved.

Tensor Infinite Arnoldi Method

Our approach is based on the infinite Arnoldi method [2] which is an iterative algo-
rithm with the following characteristics:
• it is equivalent to the Arnoldi method (for an infinite dimensional eigenproblem),
• k steps result in an Arnoldi relation

BkVk = Vk+1Hk+1,k

with Vk ∈ C
nk×k,

• it requires, for each step, the computation of

y0 = M(0)−1
k∑
`=1

M(`)(0)v` (1)

• in each step is performed the Gram-Schmidt orthogonalization between vectors of
length kn (operations involving a huge amount of data).
• it has complexity (k steps): O(k3n) due to the Gram–Schmidt orthogonalization.
Theorem. [1] It exists a tensor a ∈ Ck×k×k and a matrix Zk ∈ C

n×k such that

Vk =

k∑
`=1


a1,1,` · · · a1,k,`...

...
ak,1,` · · · ak,k,`

 ⊗ z`

moreover all the steps of the Infinite Arnoldi method can be done using this
factorization of the matrix Vk.

The new algorithm that use this representation of Vk is called Tensor Infinite
Arnoldi [1] and has the following properties:
• it requires less memory,
• the Gram-Schmidt orthogonalization is performed involving vectors of length n,
• it is much faster than [2] in practice,
• it has complexity O(k3n) due to the computation of y0, see equation (1).
Remark 1. In contrast to Infinite Arnoldi method, tensor infinite Arnoldi method in-
volves less data. This implies that on modern computer architectures, where CPU
caching makes operations on smaller data-sets more efficiently, the new algorithm
is in practice considerably faster.

Adaption to the waveguide eigenvalue problem

Notice that if k > 3 the derivatives of M(λ) have the following structure

M(k)(λ) =

(
0 0
0 RΛ(γ)(k)R−1

)
Exploiting this structure, the computation of y0 can be done more efficiently and the
complexity becomes O(nk2 +

√
nk3).

Remark 2. If the size of the problem n is large, performing k � n steps of tensor in-
finite Arnoldi method exploiting the structure of the waveguide eigenvalue problem
has the same complexity as the Arnoldi method on a classic eigenvalue problem of
the same size.

Numerical experiments

Here are presented the results of the algorithms tested on the sample problem.
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Ritz values in Ω

Ritz values outside Ω

In the pictures there are:
• convergence history of

Tensor infinite Arnoldi for a
problem of size n = 411, 522
(left),
• one of the eigenfunctions in the

region of interest Ω (below).
Conclusions:
• the algorithm solves efficiently

the problem,
• large problems can be solved:

– size more than one million on a
laptop (16GB of RAM),

– size more than ten millions on
a server (60GB of RAM).

x

z

-3 -2 -1 0 1 2 3
0

0.5

1

0

0.5

1

CPU time storage of Vm

n IAR WTIAR IAR WTIAR
462 8.35 secs 2.58 secs 35.24 MB 7.98 MB

1,722 28.90 secs 2.83 secs 131.38 MB 8.94 MB
6,642 1 min and 59 secs 4.81 secs 506.74 MB 12.70 MB
26,082 8 mins and 13.37 secs 13.9 secs 1.94 GB 27.52 MB

103,362 out of memory 45.50 secs out of memory 86.48 MB
411,522 out of memory 3 mins and 30.29 secs out of memory 321.60 MB

1,642,242 out of memory 15 mins and 20.61 secs out of memory 1.23 GB

CPU time and estimated memory required to perform m = 100 iterations of Infinite
Arnoldi (IAR) and Waveguide Tensor Infinite Arnoldi (WTIAR).

References

[1] E. Jarlebring, G. Mele, and O. Runborg. The waveguide eigenvalue problem and
the tensor infinite Arnoldi method. arXiv preprint arXiv:1503.02096, 2015.

[2] E. Jarlebring, W. Michiels, and K. Meerbergen. A linear eigenvalue algorithm
for the nonlinear eigenvalue problem. Technical report, 2010.

[3] J. Tausch and J. Butler. Floquet multipliers of periodic waveguides via Dirichlet-
to-Neumann maps. 159(1):90–102, 2000.


